MENTOR TEAM

导师团队

我们欢迎拥有各种学术背景的杰出学者、研究员和年轻科学家。到 2026 年,西湖大学预计将拥有 300 名助理教授、副教授和正教授(包括讲座教授),600 名研究、教学、技术支持和行政人员以及 900 名博士后研究员。

返回
Alexey Cheskidov, Ph. D.

Alexey Cheskidov, Ph. D.

理学院

数学系

数学流体动力学

联系

邮箱: cheskidov@westlake.edu.cn

网站: https://its-mathfluids.lab.westlake.edu.cn/

个人简介

Alexey Cheskidov 2004年毕业于印第安纳大学,获数学博士学位。2004 年至2023 年任职于密歇根大学、芝加哥大学、伊利诺伊大学芝加哥分校等高校,并于2016 年成为正教授。2021年至2022年为普林斯顿高等研究院成员。2023年8月加入西湖大学,任理论科学研究院数学讲席教授。

学术成果

Alexey Cheskidov教授长期致力于研究数学流体动力学和湍流中出现的一些基本问题,包括Navier-Stokes、Euler及相关方程解的正则性,耗散反常,Onsager 猜想,凸积分的非唯一性,全局吸引子,以及湍流中的间歇性的作用。


代表论文

1) A. Cheskidov and X. Luo, L^2-critical nonuniqueness for the 2D Navier-Stokes equations, Annals of PDE 9, 13 (2023).

2) A. Cheskidov and X. Luo, Sharp nonuniqueness for the Navier-Stokes equations, Inventiones mathematicae, 229, 987--1054 (2022).

3) A. Cheskidov and R. Shvydkoy, Volumetric theory of intermittency in fully developed turbulence, Archive for Rational Mechanics and Analysis 247, 45 (2023)

4) A. Cheskidov and M. Dai, Kolmogorov's dissipation number and the number of degrees of freedom for the 3D Navier-Stokes equations. Proceedings of the Royal Society of Edinburgh: Section A, 149, 429-446 (2019).

5) A. Cheskidov, M. Dai, and L. Kavlie, Determining modes for the 3D Navier-Stokes equations, Physica D, 374: 1–9 (2018).

6) A. Cheskidov, M. C. Lopes Filho, H. J. Nussenzveig Lopes, and R. Shvydkoy, Energy conservation in two-dimensional incompressible ideal fluids, Communications in Mathematical Physics, 348: 129-143 (2016).

7) A. Cheskidov and R. Shvydkoy, a unified approach to regularity problems for the 3D Navier-Stokes and Euler equations: the use of Kolmogorov's dissipation range, J. Math. Fluid Mech., DOI 10.1007 (2014).

8) A. Cheskidov and R. Shvydkoy, The regularity of weak solutions of the 3D Navier-Stokes equations in B_ (∞,∞)~(-1), Archive for Rational Mechanics and Analysis, 195, 159-169 (2010).

9) A. Cheskidov, Global attractors of evolutionary systems, J. Dyn. Diff. Equat. 21, 249-268 (2009).

10) A. Cheskidov and S. Friedlander, The vanishing viscosity limit for a dyadic model (with), Physica D 238, 783-787 (2009).

11) A. Cheskidov, Blow-up in finite time for the dyadic model of the Navier-Stokes equations, AMS Tran., 360, 5101-5120 (2008).

12) A. Cheskidov, P. Constantin, S. Friedlander, and R. Shvydkoy, Energy conservation and Onsager's conjecture for the Euler equations, Nonlinearity 21, 1233-1252 (2008).

13) A. Cheskidov and C. Foias, On global attractors of the 3D Navier-Stokes equations, Journal of Differential Equations 231, 714-754 (2006).

14) A. Cheskidov, Boundary layer for the Navier-Stokes-alpha model of fluid turbulence, Archive for Rational Mechanics and Analysis 172, 333-362 (2004).